	CI	TY OF	DAYTO	ON
Public	Works	Design	Standar	rds

Division 3	
Stormwater Management	

DIVISION 3 STORMWATER MANAGEMENT

3.1 PURPOSE

- a. In addition to the purposes outlined under Division 1 of these PWDS, the intent and purpose of these Standards is to ensure the development of a stormwater management system which will:
 - 1) be of adequate design to safely manage all volumes of water generated upstream and on the site, and convey it to an approved point of disposal;
 - 2) provide points of disposal for stormwater generated by existing upstream properties and future upstream developments;
 - 3) prevent the uncontrolled or irresponsible discharge of stormwater onto adjoining public or private property;
 - 4) prevent the capacity of downstream channels and storm drainage facilities from being exceeded, unless downstream improvements to increase capacity are provided as part of the project;
 - 5) have sufficient structural strength to resist erosion and all external loads which may be imposed;
 - 6) maximize the use of the City's natural drainage system;
 - 7) be designed in a manner to allow economical future maintenance;
 - 8) require the use of design and materials to provide a system with a minimum practical design life of not less than 50 years.
 - 9) not negatively impact existing water quality.
 - 10) include stormwater detention as required, to limit post-development stormwater discharge flow rates to pre-development flow rates.
 - 11) comply with the general provisions of Oregon state drainage case law.

 Alternate materials and methods will be considered for approval on the basis of these objectives.
- b. These Standards cannot provide for all situations. They are intended to assist but not to substitute for competent work by professional design engineers.

3.2 APPLICABILITY

- a. These Standards shall govern all construction and upgrading of all public and private drainage and associated facilities in the City of Dayton and applicable work within the City's service areas. This standard shall apply to all drainage facilities which impact any public storm drain system, public right-of-way or easement dedicated to or located within the City of Dayton and within all off-street parking and loading areas.
- b. All storm water runoff shall be conveyed to a public storm drain or natural drainage channel having adequate capacity to carry the flow without overflowing or otherwise causing damage to public and private property. In the case of private development, the developer shall pay all costs associated with designing and constructing the facilities necessary to meet this requirement.
- c. Permanent storm drain facilities shall be provided to serve all properties within the City of Dayton in accordance with these Standards, at the developer's expense. This shall generally be interpreted to mean that permanent storm drainage facilities shall be provided for the following types of development (this shall include both (A) drainage facilities designed to accommodate new drainage water generated by the development, as well as (B) drainage facilities designed to convey historic drainage water [which flows onto the development property from offsite] through the property and to an approved point of disposal):
 - 1) Existing legal lots of record at the time development occurs;
 - 2) All partitions and subdivisions;
 - 3) Developments entailing construction which will change the point at which water flows from one property onto another property, the point of discharge of surface waters, the quantity of discharge, or which will discharge water at a higher velocity than that of the preconstruction discharge rate.
 - 4) Construction or reconstruction of public or private streets and temporary detours;
 - 5) Developments entailing construction in or adjacent to any existing stream or watercourse including intermittent streams.

3.3 SPECIAL ITEMS

- a. The design of the following are considered special items and are not covered in detail in these Standards:
 - 1) Stormwater Pump Stations and Force Mains
 - 2) Siphons
 - 3) Water Quality Facilities
 - 4) Energy Dissipators
 - 5) Flow Measurement Devices
 - 6) Bore Crossings
 - 7) Concrete Box Culverts (where standard culverts are not feasible)
- b. Review and approval of the above special items by the City Engineer and the Public Works Director shall be required. When requested by the City, full design calculations shall be submitted for review prior to approval.

3.4 APPROVAL OF ALTERNATE MATERIALS AND METHODS

- a. Any alternate material or method not explicitly approved herein will be considered for approval on the basis of the objectives set forth in Paragraph 3.1, Purpose. Persons seeking such approval shall make application in writing to the City Engineer and Public Works Director. Approval of any major deviation from these Standards shall be in written form. Approval of minor matters will be made in writing, if requested. Any and all such requests shall be submitted in writing to the Public Works Director prior to City approval of the design drawings.
- b. Any alternate must meet or exceed the minimum requirements set forth in these PWDS (also see "equal" & "substitute" definitions under PWDS 1.4).
- c. The written application is to include, but is not limited to, the manufacturer's specifications and testing results, design drawings, calculations and other pertinent information.
- d. Any deviations or special problems shall be reviewed on a case-by-case basis and approved by the City Engineer and the Public Works Director. When requested by the City, full design calculations shall be submitted for review with the request for approval.

3.5 <u>CONSTRUCTION DRAWINGS</u>

- a. Construction drawings shall conform to the requirements of Division 1 of these PWDS.
- b. Detail drawings shall be included on the construction drawings for all storm drain appurtenances including but not limited to manholes, catch basins, junction boxes,

ditch inlets, storm drain service lateral connections, outlet structures, riprap outlets, detention facilities, water quality features, rain gardens, etc.

3.6 CITY STANDARD DETAILS

- a. City standard details included in the Appendix are supplemental to the text of these PWDS and show the City's minimum requirements for the construction of certain standard system components.
- b. In the case of conflicts between the text of these PWDS and the City standard details, the more stringent as determined by the City Engineer and Public Works Director shall apply.
- c. As required by Division 1 of these standards, all applicable City standard details shall be included on the construction drawings. Details shall be placed in numerical order on the detail sheets (oriented from top left of each sheet to bottom right), for ease of reference during construction.

3.7 **DEFINITIONS AND TERMS**

- a. In addition to the definitions contained in Division 1 of these Standards, the following definitions may apply particularly to stormwater systems. Unless otherwise defined in these PWDS, the following definitions and abbreviations shall apply whenever used. Other definitions as outlined in the Oregon Plumbing Specialty Code (OPSC) shall also apply.
 - 1) <u>Abbreviations</u>: Acceptable abbreviations for showing types of new and existing pipe materials and facilities on the plans are as follows:
 - a) AC Asbestos Cement
 - b) CAP Corrugated Aluminum Pipe
 - c) CI Cast Iron
 - d) CHDPE Corrugated High Density Polyethylene
 - e) CMP Corrugated Metal Pipe (Aluminum)
 - f) CP Non-reinforced Concrete Pipe
 - g) DI Ductile Iron
 - h) HDPE High Density Polyethylene
 - i) PVC Polyvinyl Chloride
 - j) RCP Reinforced Concrete Pipe
 - 2) <u>Building Drain</u>: The building drain is that part of the lowest piping of the drainage system which receives the discharge from stormwater drainage pipes inside or within 5 feet of the outside walls of the building and conveys it to the building storm drain, which begins five (5) feet outside the building wall or building foundation.
 - 3) <u>Building Storm Drain</u>: That part of the piping of a stormwater drainage system which begins at the connection to the building drain and conveys

- stormwater to an approved point of disposal.
- 4) <u>Catch Basin</u>: An approved receptacle designed to receive surface drainage and direct it to a stormwater collection system.
- 5) <u>Creek:</u> Any and all surface water generally consisting of a channel having a bed, banks, and/or sides in which surface waters flow to drain higher land to lower land, both perennial and intermittent, excluding flows which do not persist for more than 24-hours after the cessation of 1/2-inch of rainfall in a 24-hour period from October through March.
- 6) <u>Detention</u>: The holding of runoff for a short period of time while releasing it to the downstream drainage system at a controlled rate.
- 7) <u>Drainage Facilities/System</u>: Pipes, ditches, detention basins, creeks, culverts, etc. used singularly or in combination with each other for the purpose of conveying or storing stormwater runoff.
- 8) Impervious Areas/Surfaces: Those hard surface areas located upon real property which either prevent percolation of water into the land surface or reduce the percolation rate which existed under natural conditions prior to development. Also surfaces which cause water to run off the land surface in greater quantities or at increased flow rates than under natural conditions which existed prior to development. Common impervious surfaces include but are not limited to rooftops, driveways, parking lots or storage areas, sidewalks, patios, etc.
- 9) <u>Natural Location</u>: The location of those channels, swales, and other non-manmade drainage conveyance systems as defined by the first documented topographic contours existing for the subject property either from maps or photographs.
- 10) On-site Detention: The storage of excess runoff on the development site and gradual release of the stored runoff into a public storm drain system after the peak of the runoff has passed.
- 11) <u>Peak Discharge</u>: The maximum water runoff rate determined for the design storm.
- 12) Pre-Development Conditions. Defined as a site with natural vegetation on native soil, unless otherwise approved in writing by the City Engineer and the Public Works Director, based on the storm system having adequate remaining available downstream capacity for the site being developed (as defined in these standards), based on calculations and storm system modeling provided by the developer's engineer to the satisfaction of the City.
- 13) <u>Private Storm Drain</u>: A storm drain located on private property serving parking lot catch basins or more than one structure on the same legal lot of

- record, and not operated or maintained by the City.
- 14) <u>Public Storm Drain</u>: Any storm drain in a public right-of-way or easement operated or maintained by the City.
- 15) <u>Receiving Body of Water</u>: Creeks, streams, lakes, and other bodies of water into which runoff is naturally or artificially directed.
- Release Rate: The controlled rate of release of drainage and runoff water from property, storage ponds, detention basins, or other facility during and following a storm event.
- 17) <u>Remaining Available Downstream Capacity</u>. See description/definition under "Detention Facilities" section of these standards.
- 18) Retention Facility: Facilities which hold water for a considerable length of time and then consume it by evaporation, plant transpiration, or infiltration into the soil.
- 19) <u>Sedimentation</u>: Deposition of erosional debris and soil sediment displace by erosion and transported by water from a higher elevation to an area of lower gradient where sediments are deposited as a result of slack water.
- 20) <u>Terrace</u>: A relatively level step constructed in the face of a slope for drainage, erosion control and maintenance purposes.
- 21) <u>Trunk Drainage System</u>: That portion of the drainage system which receives waters from upstream land areas in excess of 20 acres, or with pipe diameters of 18-inches or larger. The drainage system may consist of watercourses or man-made facilities such as pipes, ditches, and culverts.
- 22) <u>Wetlands</u>: As defined by the Division of State Lands and the US Army Corps of Engineers.

3.8 MATERIALS

a. General

- 1) Unless otherwise approved by the City Engineer, materials shall conform to the minimum requirements outlined herein and as shown on the City standard details.
- 2) In the case of conflicts between the provisions of these PWDS and the PWCS, the more stringent as determined by the City Engineer and Public Works Director shall apply. Acceptable materials shall be as outlined in these PWDS.
- 3) It is not intended that materials listed herein are to be considered acceptable for all applications. The design engineer shall determine the materials suitable for the project to the satisfaction of the City Engineer.
- 4) <u>Material/Equipment Submittals from Contractor Required</u>. Per Section G-1300, construction submittals shall be provided by the Contractor for review by the City, for all material & equipment which will incorporated into work covered under the PWDS.
- 5) <u>Granular backfill</u> shall be ³/₄"-0 conforming to OSSC (ODOT/APWA) 02630.10 (Dense Graded Base Aggregate), with no more than 10% passing the #40 sieve and no more than 5% passing the #200 sieve.

b. Pipe Type By Cover Depth: Unless otherwise approved by the City Engineer, storm drain pipe materials shall conform to the table below. Uniform pipe material shall be used on each pipe run between structures. Special requirements for use of jointed HDPE pipe for slopes exceeding 6% for or cover depths greater than 10 feet are listed in the following table.

ALLOWABLE STORM DRAINAGE PIPE BASED ON COVER DEPTH (see PWDS 3.14 for min. cover depth w/out variance)			
↓ COVER DEPTH↓ (from finish grade)	10" – 18" DIAMETER		
Less than 1½' Cover	Class 50 Ductile iron pipe with bell & spigot joints and rubber gaskets.		
1½' to 2½' Cover	Pipe specified for lesser depths -OR-Class 3, ASTM C-14 non-reinforced concrete pipe with bell & spigot joints and rubber gasketsOR-PVC pipe conforming to AWWA C900 DR 18 with bell and spigot joints and rubber gasket.		
2½' to 10' Cover	Pipe specified for lesser depths -OR-PVC pipe conforming to ASTM D-3034 solid wall PVC SDR 35 (6"-15") or ASTM F-679 PVC solid wall SDR 35 (18") with bell and spigot joints and rubber gasket -OR-HDPE (High Density Polyethylene) pipe conforming to AASHTO M-252 (8"-10") or AASHTO M-294 (12"-18"). For slopes less than 6% the pipe shall be ADS N-12 IB ST, Hancor Sure-Lok F477, or approved equal. For slopes greater than 6% the pipe shall be ADS N-12 IB WT, Hancor Blue Seal, or approved equal with watertight pressure testable fittings.		
More than 10' Cover	Case-by-case basis.		
↓ COVER DEPTH↓ (from finish grade)	21" – 30" DIAMETER		
Less than 1½' Cover	Class 50 Ductile iron pipe with bell & spigot joints and rubber gaskets.		
1½' to 2½' Cover	Pipe specified for lesser depths -OR-Class IV (minimum), ASTM C-76 reinforced concrete pipe with bell & spigot joints and rubber gaskets -OR-PVC pipe conforming to AWWA C900 DR 18 with bell and spigot joints and rubber gasket.		
2½' to 10' Cover	Pipe specified for lesser depths -OR-ASTM F-679 PVC solid wall SDR 35 pipe with bell and spigot joints and rubber gasket -OR-HDPE (High Density Polyethylene) pipe conforming to AASHTO M-294. For slopes less than 6% the pipe shall be ADS N-12 IB ST, Hancor Sure-Lok F477, or approved equal. For slopes greater than 6% the pipe shall be ADS N-12 IB WT, Hancor Blue Seal, or approved equal with watertight pressure testable fittings.		
More than 10' Cover	Case-by-case basis.		

GREATER THAN 30" DIAMETER, OTHER PIPE MATERIALS - Case-by-case basis.

Driveway Culverts or Open Storm Inlets: Pipe type based on cover depth, minimum size 12-inch diameter (or size based on flow capacity, adjacent existing street crossing or storm drain size, whichever is greater).

Pipe End Protection: PVC or HDPE pipe is not allowed for culverts or for exposed inlets/outfalls without structures unless concrete end caps are provided (6" min thickness, typically 12" larger than pipe OD unless larger size required by Public Works Director).

Detention Systems. Piping associated with detention systems (ie. including detention pipe where applicable, piping between the detention basin & the flow control manhole, overflow piping, etc.) shall conform with the minimum requirements of this table. Other than pipe which is part of a detention system as noted, this pipe material table also does not apply to other <u>private</u> storm piping which fully complies with the material <u>and</u> slope requirements of the Oregon Plumbing Specialty Code (OPSC), <u>AND</u> which are not located under common driveways, private streets or fire lanes.

c. Storm Drain Pipe

1) <u>Ductile Iron</u>

a) Ductile iron storm pipe shall be Class 50 pipe conforming to AWWA C-151, and cement-mortar lined and seal coated in accordance with AWWA C-104.

2) Non-Reinforced Concrete Pipe (CP)

- a) Non-reinforced concrete pipe and specials shall conform to AASHTO M86 (ASTM C-14), Class 3 minimum.
- b) Joints shall be bell and spigot with an O-ring as specified or shown on the drawings and conforming to the following:
 - (1) Bell and Spigot joints shall be sealed with flexible watertight gaskets meeting or exceeding all requirements of Federal Specifications SS-S-06210 (GSA, FSS Washington, DC) "Sealing Compounds, Preformed Plastic for Pipe Joints," type 1 Ropeform. Such gaskets may be RAMNEK as manufactured by K.T. Snyder Co., Inc., of Houston, Texas; KENTSEAL No. 2 Joint Sealant as manufactured by Hamilton Kent Mfg., Co., of Kent, Ohio, or approved equal.
 - (2) O-Ring joints shall conform to ASTM C-443. The gaskets shall conform to material requirements of ASTM C-361.

3) Reinforced Concrete Pipe (RCP)

- a) Reinforced concrete pipe shall meet the requirements of AASHTO M170 (ASTM C-76) Class IV minimum.
- b) Joints shall be O-ring type in conformance with non-reinforced concrete pipe joint and gasket specifications above.

4) **PVC Pipe**

- a) Pipe and fittings shall conform to ASTM D-3034, SDR 35 or ASTM F 679, SDR 35 as outlined above.
- b) Pipe shall be continually marked with manufacturer's name, pipe size, cell classification, SDR rating, and ASTM classification.
- c) The joints shall conform to ASTM D-3212, Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals.

5) High Density Polyethylene Pipe (HDPE)

- a) Pipe and fittings shall have integrally formed smooth interior pipe surface.
- b) Pipe and fittings shall conform to the requirements as listed in the table above.
- c) HDPE (High Density Polyethylene) pipe conforming to AASHTO M-252 (8"-10") or AASHTO M-294 (≥12"). For slopes less than 6% the pipe shall be ADS N-12 IB ST, Hancor Sure-Lok F477, or approved equal. For slopes greater than 6% the pipe shall be ADS N-12 IB WT, Hancor Blue Seal, or approved equal with watertight pressure testable fittings.

d. Joints

- 1) Except as otherwise specified, joints for pipe shall be watertight joints using elastomeric ring gaskets. The gaskets shall be securely fixed into place so that they cannot be dislodged during joint assembly.
- 2) The gaskets shall be of a composition and texture which is resistant to common ingredients of drainage, including oils and groundwater, and which will endure permanently under the conditions of the proposed use.

e. Pipe Accessories

- 1) Fittings shall be of the same material as the pipe, molded or formed to suit pipe size and end design, in required tee, bends, elbows, cleanouts, reducers, traps and other configurations as required.
- 2) Manufactured fittings shall be used for all connections to existing or new storm drains.

f. Catch Basins

- 1) Catch basin construction and dimensions shall conform to the City standard details. Side inlet grated catch basins shall be required.
- 2) Catch basin frame and grate shall conform to City standard details, and shall be fabricated of structural steel, ASTM A-7, A-36 or A-273.
- 3) Solid lids on junction boxes shall be minimum 3/4-inch steel plate, and shall be provided with at least one lifting hole. Junction boxes located in a travel lane shall have a manhole frame and cover.

g. Manholes

- 1) Except as modified herein, precast concrete pipe manhole sections, transition sections, eccentric cones, flat slab tops, and adjusting rings shall conform to the requirements outlined under Division 4, Sanitary Sewers and as shown in the City standard details.
- 2) Storm manholes shall be equipped with permanent factory installed steps to provide a continuous ladder of 12-inch center-to-center rung spacing. Steps shall be same as specified for sanitary sewer manholes. Steps shall not be required for manholes 4 feet or less in depth (rim to invert).
- 3) Manhole castings for storm manholes shall have 16-hole lids.
- 4) Unless otherwise required by the Public Works Director, connections to existing storm manholes shall comply with the requirements for manhole taps on sanitary sewer manholes, as outlined under Division 4, Sanitary Sewers and as shown in the City standard details (except for vacuum testing requirement).

5) Pollution/Flow Control Manhole Lids

a) Unless otherwise required by the Public Works Director, pollution/flow control manholes shall be provided with a 24-inch diameter casting and lid, with a separate access hole with a cast iron cleanout box & lid over the orifice, as shown on the City standard details.

h. Mainline Storm Cleanouts

- 1) Except as modified herein, mainline storm cleanouts (where approved by the City) shall conform to the requirements outlined under Division 4, Sanitary Sewers and as shown in the City standard details.
- 2) A 3,300 psi concrete collar is required for cleanouts located outside of paved areas. The shaft or chimney of the cleanout shall be a minimum of 8-inches in diameter.

i. Concrete (Cast-in-Place)

1) All concrete shall conform to the requirements of OSSC (ODOT/APWA) 00440, Commercial Grade Concrete, 3300 psi min @ 28 days, max 5" slump, 4.5% air (±1.5%).

j. Underground Warning Tape

1) Warning tape shall conform with the requirements noted on the City standard details and standard construction notes (6-inch width, green color & "Caution:

- Buried Storm Line Below" or approved equal printed continuously down the length of the tape).
- Underground warning tape shall be detectable or non-detectable acid and alkali resistant safety warning tape. The tape shall consist of a minimum 4.0 mil (0.004") thick, virgin low density polyethylene plastic film formulated for extended use underground. The tape shall be in accordance with the APWA national color code and shall be permanently imprinted in lead free black pigments suitable for direct burial.

k. Toning / Tracer Wire

- 1) A continuous insulated 12 gauge solid core copper toning wire shall be supplied with storm pipe *(both public & private)*. Insulation shall be green in color for storm piping.
 - All tracer wire splices shall be made with corrosion resistant waterproof wire nuts (DBR direct bury splice kit by 3M Company, or equal).
- 2) Wire shall penetrate into manholes and catch basins within 18 inches of the rim elevation.

1. Bore Casings and Accessories

- 1) Carrier pipe installed inside steel bore casings shall be Ductile Iron or PVC as specified herein.
- 2) Bore casing and carrier pipe design and installation shall conform to the requirements outlined under Division 5, Water Distribution.
- 3) Installation of public storm drain pipe inside of a casing pipe (mainline pipe or laterals within a public right-of-way) requires specific approval by the Public Works Director on a case-by-case basis.

m. RipRap

- 1) Riprap shall be of the size and depth specified in these PWDS or as noted/specified on the approved drawings.
- 2) Geotextile fabric shall be installed under all riprap, and shall extend to the surface on all sides and ends of the riprap channels, pads, etc.
- 3) Unless otherwise noted on the drawings (ie. for grouted riprap, etc.), all riprap shall be have all voids filled with 3/4"-0 granular baserock to prevent unrestricted water flow through the riprap and erosion of the underlying subgrade.

3.9 GENERAL DESIGN CONSIDERATIONS (Stormwater)

a. General Requirements

- The design of storm drainage systems shall include provisions to adequately control runoff from all public and private streets and the roof, footing, and area drains of residential, multifamily, commercial and industrial developments, and to provide for the future extension of the storm drainage system to serve the entire drainage basin.
- 2) <u>Approved Point of Disposal</u>: All storm water runoff shall be conveyed to an approved point of disposal as summarized below. In the case of private development, the developer shall pay all costs associated with designing and constructing the facilities necessary to meet this requirement.
- Allowable Discharge: The design storm peak discharge from the subject property may not be increased from conditions existing prior to the proposed development except where it can be satisfactorily demonstrated by the applicant that there is no adverse impact to downstream properties, and that the "remaining available downstream capacity for the site being developed" (per PWDS 3.19.b) is not exceeded.
- 4) Public storm drains within easements will be permitted only upon a showing that drainage cannot be provided from within a right-of-way. Minimum easement widths shall be as outlined herein.
- 5) <u>Gravity Flow</u>: Where possible, all public & private storm drains shall be designed to flow by gravity to an existing or new storm drain system without lift stations. The property owner or developer is responsible for constructing offsite improvements and/or obtaining any easements required to accomplish this.
- 6) <u>Self-Cleaning</u>. Except for pollution control structures or water quality structures specifically designed for sediment capture & removal, all storm drain system components shall be designed to be self-cleaning to the extent possible (ie. bubbler type systems are not typically allowed, in order to prevent sediment and/or debris buildup inside upstream pipes & structures).

Any exceptions must be approved in writing by the City Engineer and Public Works Director (based on exceptional and extraordinary circumstances), and the system must include provisions for inspection, cleaning & maintenance (a recorded maintenance agreement shall also be provided, unless otherwise approved in writing by the Public Works Director).

b. Approved Point of Disposal

- Surface or subsurface drainage (caused or affected by changing of the natural grade of the existing ground or removal of natural ground cover of placement of impervious surfaces) shall not be allowed to flow over adjacent public or private property in a volume or location materially different from that which existed before development occurred unless written approval is first granted by the all agencies with jurisdiction and by affected property owners, and all such drainage shall be collected and conveyed in an approved manner to an approved point of disposal.
- 2) The approved point of disposal for all stormwater may be a storm drain, existing well defined open channel or creek as approved by the City Engineer and the Public Works Director (Note: discharge to a natural drainage way or the use of a natural drainage way for conveyance must be approved by the City and any other County, state or federal agencies having jurisdiction).
 - Acceptance of proposed point of disposal will depend upon the prevailing site conditions, condition and capacity of existing downstream facilities, and feasibility of alternate design. Verify with Public Works and/or any storm drainage master plan documents regarding issues related to downstream capacity or other discharge/receiving water issues to be addressed.
- When private property must be crossed in order to reach an approved point of disposal (or if downstream improvements are required across private property in order to provide required capacity or depth), it shall be the developer's responsibility to acquire a recorded drainage easement from the private property owner meeting the approval of the City Engineer and the Public Works Director.
- Where existing open channels must be improved to provide adequate slopes and/or capacity for design flows, the design and construction of such on-site or downstream off-site improvements shall be the developer's responsibility, including acquisition of access rights for surveying, design and construction of such improvements.
- New drainage facilities installed must be a closed conduit system. Temporary drainage ditch facilities, when approved, must be engineered to contain the stormwater without causing erosion or other adverse effects to the private property.

c. Providing for Future Development & Collection of Upstream Drainage

1) <u>To & Through</u>. As a condition of building/infrastructure construction, all developments are required to provide public storm drainage systems (or private storm drainage systems where approved by the City) to serve adjacent upstream parcels in order to provide for the orderly development of the

drainage area, as well as connection (to the new system) of existing storm lines or storm drain service laterals crossed or intercepted by the new storm lines (including manholes or catch basins which can be served by the new storm lines), at locations as required by the City Engineer and Public Works Director (see also PWDS 1.6.c):

The requirement above shall include the extension of public or private storm drain lines or swales in easements across the development property (ie. public or private easements as applicable) as required to collect drainage from adjoining, upstream or uphill property is inside or outside of the development or lot boundary) anywhere that water has historically drained onto the development property as either overland surface flow or concentrated flow (for purposes of this requirement, "historically drained onto the development property" refers to conditions existing at the time a Public Works or building permit application is submitted for construction on the property).

This shall also include extension across street frontages of the property to adjoining properties when the storm drain system is located in the street right-of-way.

This shall also include extension to the far side of streets fronting or adjacent to the development as required to avoid work within or under these streets in the future.

- The requirements above shall include storm drains which are oversized to provide capacity for future upstream development, or as required to meet the minimum sizes shown in the applicable storm master plan (see also PWDS 1.6.d).
- 4) See PWDS 1.11.i regarding the responsibility of the design engineer and development team to investigate and disclose any upstream drainage which flows onto the development property (surface runoff, swale runoff or piped runoff) in a manner which will blocked by development improvements or grading, whether during initial development construction or subsequent building construction.
- 5) Swales along Property Lines to Intercept Upstream Drainage.
 - a) Where swales along property lines are necessary to intercept surface runoff from uphill developed or undeveloped property, the swales shall be located within an easement on the development property, shall be a minimum of 1 foot in depth (3H/1V max side slopes) and slanted grate inlets shall be provided at spacing & location acceptable to the City Engineer (typically on the upstream side of each property line crossed by the swale, unless otherwise approved based on unusual extenuating circumstances, as determined by the City Engineer).

b) Unless otherwise approved by the City Engineer, drainage swales to intercept upstream surface runoff shall be provided with a 6-inch typical bottom width.

d. Storm Drainage Design Factors

- 1) The following factors as a minimum shall be addressed in the design of storm drain systems and determination of design flows.
 - a) Drainage basin to be served.
 - b) Topography of the area
 - c) Depth of excavation
 - d) Soils conditions
 - e) Land use within the area to be served (pervious versus impervious areas).
 - f) Projected population within the area to be served at build-out.
 - g) Flows from commercial, industrial or institutional users.
 - h) Condition and size of existing storm drains
 - i) Location of approved disposal point
 - j) Maintenance, including accessibility for cleaning and inspection personnel and equipment.
 - k) Energy dissipation at discharge points.
 - 1) Storm drain capacity designed to carry, when flowing full but not surcharged, not less than the ultimate design flows from upstream properties.

3.10 STORM DRAINAGE DESIGN CALCULATIONS AND CAPACITY

a. **Design Calculations**

- Design calculations shall be submitted for all drainage facilities and shall be stamped by a professional engineer licensed in the State of Oregon. Peak flows shall be calculated using either the Rational Method or the Santa Barbara Urban Hydrograph (SBUH) method, subject to requirements herein and direction from the City Engineer and/or other agencies with jurisdiction.
 - a) A summary of these drainage calculations, including basin maps, shall be included on the site plan drawings (see PWDS 1.11.i).
- 2) <u>Rational Method</u>: One method used for calculating peak flows from small drainages less than 200 acres is the Rational Method.
 - a) Peak design discharges shall be computed using the rational method formula, Q=CiA, where Q = flow in cfs, C = runoff coefficient, i = rainfall intensity, and A = area in acres.

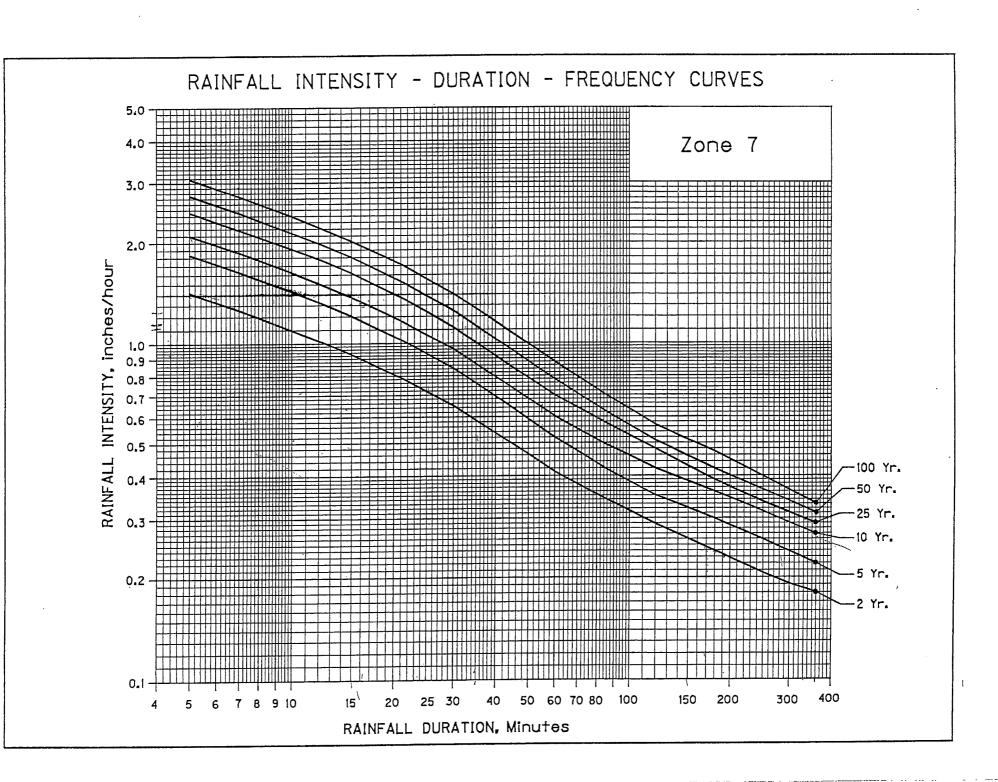
- 3) <u>SBUH</u>: Another method of involves the use of the Santa Barbara Urban Hydrograph (SBUH) method to develop runoff hydrographs using 24 hour storm data for the local area, based on current NOAA Atlas 24 hour isopluvials for Oregon and NRCS Type 1A rainfall distribution.
 - a) For Dayton, the 24-hour precipitation values from the NOAA Atlas 2, Volume X, for use with the SBUH method are as follows (ODOT design rainfall intensities may differ):
 - (1) 5-YR 24-Hr = 2.7"
 - (2) 10-YR 24-Hr = 3.2"
 - (3) $25-YR\ 24-Hr = 3.7$ "
 - (4) 50-YR 24-Hr = 4.2"
 - b) The City Engineer reserves the right to verify all calculations using the Rational Method, and require larger pipe sizes if the Rational Method calculations result in higher flows than the SBUH methodology.

b. <u>Design Storm</u>

- 1) <u>Rational Method Rainfall Intensity-Duration Curve</u> The rainfall intensity-duration-frequency (IDF) curve for use under the Rational Method in the City of Dayton is the ODOT Zone 7 IDF curve *(enclosed herein)*.
- 2) <u>Rational Method Design Frequency</u> The intensity-duration design frequency for use under the Rational Method is based on the time of concentration for the area and the size of the drainage facility. The adopted criteria are listed in the following table.

Rational Method - DESIGN STORM FREQUENCY ¹		
AREA	FREQUENCY	
Residential areas ²	10-year storm	
Commercial and high value districts ²	10-year storm	
Trunk lines (18" pipe and larger)	25-year storm	
Minor creeks, open channels and drainage ways (not shown as a flood plain on the Flood Insurance Rate Map (FIRM))	50-year storm	
Major creeks/channels (shown as a flood plain on the FIRM)	100-year storm	

¹ See PWDS 3.10.a.3 regarding design storm when SBUH methodology is used for pipe sizing. ² See categories below for trunk lines, creeks, open channels, drainage ways, etc. in these areas.


3) <u>SBUH Design Storm for Pipe Sizing:</u> Where Santa Barbara Urban Hydrograph (SBUH) based computer program is proposed for use in sizing

storm drain pipes, a 50 year 24 hour SBUH storm event must be used in lieu of the 10 year or 25 year rational storm frequency to provide equivalent capacity for peak discharge.

Division 3-18

ODOT Zone 7 IDF Curve Tabular Data (Dayton)

Rainfall	Rainfall Intensity, inches/hour				
Duration	5 year	10 year	25 year	50 year	100 year
(Min)	Storm	Storm	Storm	Storm	Storm
5	1.82	2.10	2.45	2.75	3.10
6	1.71	1.98	2.30	2.60	2.90
7	1,62	1.88	2.19	2.45	2.75
8	1.56	1.78	2.09	2.35	2.60
9	1.50	1.70	2.00	2.24	2.50
10	1.43	1.62	1.90	2,15	2.40
11	1.39	1.57	1.85	2.05	2.30
12	1.32	1.51	1.78	2,00	2.20
13	1.29	1.46	1.72	1.92	2.15
14	1.25	1.40	1.67	1.87	2.09
15	1.20	1.38	1.61	1.80	2.02
20	1.05	1.19	1.40	1.57	1.77
25	0.93	1.07	1.24	1.39	1.55
30	0.84	0.96	1.12	1.25	1.40
35	0.76	0.87	1.00	1.11	1.27
40	0.70	0.79	0.91	1.02	1.16
45	0.64	0.73	0.84	0.94	1.07
50	0.59	0.68	0.78	0.88	0.99
55	0.55	0.64	0.74	0.83	0.94
60	0.52	0.60	0.69	0.78	0.88
70	0.48	0.55	0.64	0.71	0.79
80	0.44	0.51	0.59	0.65	0.73
90	0.41	0.48	0.56	0.60	0.68
100	0.39	0.46	0.53	0.56	0.64
110	0.37	0.44	0.50	0.54	0.60
120	0.35	0.42	0.48	0.51	0.57
130	0.34	0.41	0.46	0.49	0.55
140	0.33	0.395	0.44	0.47	0.53
150	0.32	0.385	0.43	0.458	0.51
160	0.31	0.375	0.41	0.44	0.495
170	0.305	0.368	0.40	0.43	0.48
180	0.30	0.36	0.39	0.42	0.47

c. Runoff Coefficients

1) The Rational Method coefficients of runoff "C" are listed below (ie. for use with rational method calculations). Use of coefficients other than those listed must be based on field investigations which demonstrate conclusively that the proposed coefficients are justified.

Rational Method - RUNOFF COEFFICIENTS			
SOIL COVER	FLAT TERRAIN S<2%	ROLLING TERRAIN 2%≤S≤10%	STEEP TERRAIN S>10%
Cultivated Land	0.30	0.35	0.40
Parks & Cemeteries	0.15	0.20	0.30
Woodlands & Forests	0.10	0.15	0.20
Meadows & Pasture Land	0.25	0.30	0.35
Single-family residential in urban areas, except corner lots with duplex potential	0.40	0.45	0.50
2) Gravel parking lots	0.50	0.55	0.60
3) Mobile home parks	0.60	0.65	0.70
4) Multi-family residential, zero-lot-line single-family residential and potential duplex lots in single-family residential	0.70	0.75	0.80
Highly impermeable (roofs and paved areas)	0.90	0.90	0.90

2) See requirements above for CN runoff curve numbers required for use with Santa Barbara Urban Hydrograph (SBUH) calculations.

All CN parameters (runoff curve number) used for SBUH calculations shall be as conservative or more conservative than the equivalent Rational Method runoff coefficients listed in these standards.

d. Time of Concentration

- 1) For land in a pre-development condition, the <u>minimum</u> time of concentration from the most remote point in the basin to the first defined channel (*ie. gutter*, *ditch or pipe*) shall be 10 minutes.
- 2) For developed residential and commercial/industrial property, the <u>maximum</u> post-development time of concentration from the most remote point in the

development to the closest inlet shall be 10 minutes, unless calculations by an acceptable method show the time to be longer for very large developments.

3.11 OPEN CHANNELS

- a. Within the UGB, creation of new open channels will not generally be allowed, and existing open channels shall be rerouted at the time of development so as not to be located in backlot areas of residential developments or other non-residential backlot areas without maintenance vehicle access along one side of the open channel.
 - 1) Where open channels are allowed by the City, ditches or open channels shall be offset from lot lines, such that maintenance access can be provided and survey monuments are not required to be set within the open channel.
 - 2) Ditches or open channels shall be typically be provided with bottom width as applicable and as approved by the City Engineer (*v*-bottom are typically not allowed).
- b. For reasons of maintenance and safety, bank slopes generally shall be 3H:1V or flatter unless otherwise required by the Public Works Director or the Public Works Director. Unless otherwise required by Public Works Director or the City Engineer, open channels shall generally be provided with a minimum of 1 foot freeboard above the design high water level, where required to ensure that the channel does not overflow onto private property between periods when the ditch is mowed or cleaned by the agency with jurisdiction.
- c. The maximum allowable design velocity shall be 7 fps. All open channels and ditches shall be designed for scour & erosion protection/prevention.
- d. The minimum allowable design velocity shall be 2 fps. The installation of a concrete lined low-flow channel may be required to achieve minimum velocity necessary to ensure that the channel is self-cleaning to the extent feasible.
- e. <u>Pipe Ends Mitered to Match Bank Slopes</u>. Unless otherwise approved by the City Engineer, all piped discharges to open channels (existing or new) shall be mitered to match the channel side slope and include a reinforced concrete collar (6" minimum thickness) to prevent settlement or erosion of the pipe trench at the discharge location, and to protect the end of the pipe. Unless otherwise approved by the Public Works Director and the City Engineer, the concrete collar shall extend from the channel bottom to the top of bank. Grates shall be provided on all inlets or outlets 18" or larger unless otherwise specifically approved by the Public Works Director and the City Engineer, as well as at any locations required by the Public Works Director to accommodate maintenance or mowing requirements.
- f. <u>Slanted Grate Inlets</u>. If grated inlets are provided at locations where swales or open channels flow into a piped storm drainage system, such grated inlets shall be slanted or mitered to match the channel end slope (to minimize the risk grates blinding off

with debris during storm events).

1) The overflow path where stormwater will be routed if the grated inlet is obstructed by debris shall be identified to verify that water will not flow onto private property which does not normally receive such flows or otherwise cause downstream damage.

3.12 STORM DRAIN ALIGNMENT AND LOCATION

a. General

- 1) Generally, storm drains shall be laid on a straight alignment between catch basins and between manholes.
 - a) Where approved by the City Engineer & the Public Works Director on a case-by-case basis (due to extraordinary extenuating circumstances), lines 12-inch in diameter and smaller may be laid on horizontal curves conforming to the street curvature provided the radius of the horizontal curve is not less than 300 feet.
 - If a curved storm drain alignment is approved, detailed installation provisions and details shall be included on the drawings regarding how the deflection will be accomplished by bending the pipe without deflecting the joint.
 - b) Variance for horizontal curves on larger size pipes shall be reviewed by the City Engineer on a case-by-case basis.
- Where storm drains are being designed for installation parallel to other utility pipe or conduit lines, the vertical location shall be in such a manner that will permit future side connections of storm drain mainlines and avoid conflicts with parallel utilities without abrupt changes in vertical grade of storm drain mainlines.

b. Storm Drain Location in Relation to Water and Sewer Lines and Other Utilities

- Horizontal Separation. Public storm drainage lines (including storm laterals within the ROW or City easements) shall be separated from all other parallel public, private or franchise utilities by a minimum of 5 feet clear unless otherwise approved in writing by the Public Works Director and the City Engineer, but in all cases a minimum of 3 foot clear separation shall be provided.
 - See PWDS 1.5.c for reference to reduced separation outside of public ROW or City easements.
- 2) Installation of franchise or private utilities in a common trench with public

storm drain lines shall be prohibited.

3) <u>Vertical Separation</u>. See PWDS 1.5.c for general vertical separation requirements at crossing.

c. Storm Drain Location in Street Right-of-Ways

- Unless otherwise approved by the City Engineer and the Public Works
 Director, storm drain lines shall generally be located in the street right-of-way
 within six (6) feet of the face of curb. Public storm mainlines shall be offset a
 minimum of 6 feet from any adjacent property line or right-of-way line.
- 2) Variance for horizontal curves on larger size pipes shall be reviewed on a case-by-case basis for approval by the City Engineer.
- Where storm alignments cross the street centerline, the design shall demonstrate that the requirements of ORS 92.044(7) are satisfied with relation to street centerline monuments (ie. utility infrastructure is not to be placed within 1 foot of a survey monument location shown on a plat).

d. <u>Storm Drain Location in Easements, Easement Widths, Maintenance Access</u> Requirements

1) Public storm drains in easements will be allowed only after all reasonable attempts to place the mains in a right-of-way have been exhausted. All easement installations must be approved in writing by the City Engineer and the Public Works Director on a case-by-case basis.

2) <u>Minimum Easement Widths</u>: Unless otherwise specified or authorized by the City, minimum easements widths for storm drains shall be as follows:

MINIMUM STORM DRAIN EASEMENT WIDTHS			
	Depth to Invert (deepest depth along easement alignment, see notes below)		
Storm Drain Diameter	$\leq 6 \text{ feet}$ > 6 feet		
10 - 15 inches	12 feet	12 feet plus 2 feet for each foot (or fraction thereof) deeper than 6 feet to invert.	
18 - 24 inches	16 feet	16 feet plus 2 feet for each foot (or fraction thereof) deeper than 6 feet to invert.	
> 24 inches	20 feet	20 feet plus 2 feet for each foot (or fraction thereof) deeper than 6 feet to invert.	

Notes:

- -- Easements shall be a constant width between manholes or other in-line structures (see 3.12.d.4 for required offsets).
- --Easement width shall be based on the deepest portion of the line between mainline structures (MHs, CBs, JBs, etc.).
- --Extend easement half the required width beyond manholes, mainline cleanouts, inlets, or similar structures (rounded up to the nearest foot).
- -- Easements along a required maintenance access lane shall be a minimum of 4 feet wider than the access lane width.
- --See below for easement widths along open channels.
 - 3) <u>Easements Widths along Open Channels</u>. Open channels located outside of public right-of-ways shall be provided with easement widths as follows:
 - a) Channel width less than 14 feet at top of banks: Channel width plus 12 feet on one side and 2 feet on the other, configuration as approved by the Public Works Director to facilitate maintenance access.
 - b) Channel width greater than 14 feet at top of banks: Channel width plus 12 feet on both sides.
 - 4) <u>Storm Main Offset within Easements</u>. When storm drains in easements are approved by the City, the storm line shall be offset a minimum of 6 feet from any property line, survey monument or easement boundary, or 1/3 the required easement width (rounded <u>up</u> to the nearest foot), whichever is greater.
 - Easement locations for public storm drain lines serving a PUD, apartment complex or commercial/industrial development shall be in parking lots, private drives or similar open areas which will permit an unobstructed vehicle access for maintenance by City forces.

- 6) Storm Mainline & Manhole Maintenance Access Requirements. Where required by the Public Works Director, public storm drain lines or detention systems located outside of developed street right-of-ways (public or private) will require all-weather maintenance access lanes similar to that required for sewers under PWDS 4.15.d (ie. all-weather maintenance vehicle access lanes [AC, concrete or similarly durable surfaces] required along mainlines and/or for access to storm manholes including flow control manholes, storm drain inlets, or other structures subject to a maintenance agreement, etc.). Vehicular access gates meeting City standards shall be provided in any fences which cross the easement.
 - If a public storm line in an easement is approved without the required maintenance vehicle access, wider easements may be required at the discretion of the Public Works Director.
- Prohibited Uses in Easements, Gate Requirements. City standards require that easements granted to the City shall not be used for any purpose which would interfere with the unrestricted use for storm drain purposes. Under no circumstances shall a building or structure or tree be placed over a storm drain pipe or easement, nor shall any parallel fences or parallel utilities be constructed within the easement (vehicular access gates acceptable to the City shall be installed in fences which the City allows to be constructed across City easements, and locks on gates so approved shall comply with the requirements of PWDS 1.12.c). Prohibited structures shall include decks, as well as footings or overhanging portions of structures located outside the easement.
- 8) <u>Common Easements, Wider Width</u>. Common placement in the easement of a sanitary sewer and storm drain line may be allowed under certain conditions subject to approval by the City Engineer and the Public Works Director. Easements wider than the minimum may be required.
 - a) Common easements will be reviewed on a case-by-case basis. Separation of utilities must meet City, Oregon State Department of Environmental Quality (DEQ) and OHA-DWS requirements.
 - b) <u>Franchise Utility Limitations in City Easements</u>. Franchise utilities shall not be placed in City utility easements unless approved in writing by the Public Works Director, subject to separation requirements in excess of minimums as dictated by Public Works Director.
- 9) Public Works Review/Approval Required prior to Recording. All easements must be furnished to the City Public Works and City Engineer for review and approval prior to recording. All recording costs shall be borne by the Developer.

3.13 STORM DRAIN MINIMUM PIPE SIZE

- a. Public storm drain mainlines shall not be less than 10-inches inside diameter, and shall begin at a structure and terminate at an approved point of disposal.
- b. Per 3.8.b (table), driveway culverts (or any other pipe specifically approved with an open inlet end) shall be a minimum of 12-inches diameter. Larger diameters shall be provided where required for flow capacity or where required to match the size of adjacent existing street crossings or storm drain pipes.
- c. When two parallel pipes are installed in lieu of a box culvert, the minimum separation between the pipes shall be one foot or 1/3 the diameter, whichever is greater. This requirement may be waived if the void between the pipes below the springline is filled by grouting or other approved method.

3.14 STORM DRAIN MINIMUM COVER

- a. All storm drains shall be laid at a depth sufficient to protect against damage by traffic (see table under PWDS 3.8.b) and to drain building footings where practical. Sufficient depth shall mean the minimum cover from the top of the pipe to finish grade at the storm drain alignment.
- b. Under normal conditions minimum cover shall be 24-inches above the top of the pipe in paved areas and 30-inches at all other locations.
- c. In areas of relatively flat terrain, the design engineer must demonstrate that sufficient depth is provided at the boundary of the development to properly drain the reminder of the upstream basin area tributary to the site.

3.15 STORM DRAIN MINIMUM SLOPE & ROUGHNESS COEFFICIENT

a. All storm drains shall be laid on a grade which will produce a mean velocity (when flowing full) of at least 2½ feet per second, based upon Manning's pipe friction formula using a roughness coefficient as noted below.

1) Roughness Coefficient:

- a) A minimum "n" value of 0.013 shall be used in Manning's formula for the design of all smooth wall pipe and 0.024 for corrugated wall pipe, or per the pipe manufacturer's recommendations, whichever is greater. The use of higher "n" values for existing pipe may be required by the City Engineer as deemed necessary by the City.
- b) In theory, new PVC and HDPE pipes have manufacturer's "n" value of 0.009 to 0.012. However, sand, dirt and rock and other deposits tend to build up in pipes over time. Hence, an "n" value of less than 0.013 will not be considered for approval.

b. The minimum acceptable slopes for various pipe sizes and types are listed below:

MINIMUM STORM DRAIN PIPE SLOPES (for 2½ fps velocity)		
Inside Pipe Diameter (inches)	Smooth Wall (n=0.013) % Slope (ft/100 ft)	
10	0.39	
12	0.30	
15	0.23	
18	0.18	
21	0.14	
24	0.12	
27 & larger	0.10	

- c. In general, gradients greater than those shown above are desirable and are particularly recommended on the upper ends of storm mainlines.
- d. The minimum grade may be reduced from the above table to produce an absolute minimum velocity of 2.0 fps upon approval of the City Engineer. Cases requiring a flatter grade than permitted above shall also be reviewed on a case-by-case basis for approval by the City Engineer.
- e. Engineers are cautioned not to specify storm drains of sizes which are obviously larger than necessary for satisfactory carrying capacity but which are specified in order to meet grade requirements (ie. a 15-inch pipe for an 12-inch pipe to acquire a decrease in slope).
 - In cases where using a larger pipe is the only option available to serve a development (as demonstrated by the design engineer to the satisfaction of the Public Works Director and the City Engineer), the larger pipe size so installed shall not be considered as a justification for the developer to be eligible for oversizing or SDC reimbursement.
- f. Storm drains shall be laid with uniform slope between structures.
- g. Grades (slopes) shall be determined to the pipe invert at the edge of the catch basin or manhole and lengths to the center of the catch basin or manhole.
- h. The difference between the inlet pipe slope (Si) and outlet pipe slope (So) at any catch basin or manhole shall not exceed 25 percent.
- i. Storm drains on slopes of 20 percent or more shall be anchored with concrete anchor

walls or other restraining methods approved or specified by the City.

j. Where velocities greater than fifteen (15) feet per second are attained, the pipe material shall be ductile iron and special provision shall be made to protect manholes against erosion and displacement by shock. This may be accomplished by installing one additional manhole to decrease the slope or to split a 90° horizontal direction change into two 45° incremental changes.

3.16 UNDERGROUND WARNING TAPE & TONING / TRACER WIRE

- a. Underground warning tape shall be placed a minimum of 12-inches and a maximum of 18-inches below the finish ground surface, and shall be continuous the entire length of the storm drain mainlines and service laterals from the mainline to the back of the PUE. Where required for mainlines not located under sidewalks or paved portions of public streets, the warning tape shall be continuous between manholes or cleanouts.
- b. All storm piping (both public lines and private lines serving parking lots, detention basins, etc.) shall have an electrically conductive tracer wire, 12 gauge minimum size single strand insulated copper with green sheathing, installed in the trench for the purpose of locating the pipe in the future. The tracer wire shall run the full length of the installed pipe with each end accessible from the surface through a manhole, cleanout or catch basin.

3.17 STORM MANHOLES AND CATCH BASINS

a. General

- 1) All junctions between storm drains shall be made at manholes, catch basins or detention basins.
- 2) Manholes or junction boxes shall be required at the following locations or as determined by the City Engineer:
 - a) All changes in horizontal or vertical alignment. Minor horizontal curvature in pipe less than 15 degrees may be allowed, (without manholes or cleanouts), depending on pipe size, street alignment, degree of curvature and reason. Maximum joint deflection shall be per manufacturer's recommendation.
 - b) All connections unless otherwise noted herein.
 - c) All changes in pipe size.
 - d) At a spacing no greater than five hundred (500) feet.

- 3) <u>Catch Basin Lead Connection</u>. For new storm mainline and/or new catch basin construction, catch basin laterals of 10 feet or less in length and 10 inches in diameter or less may connect to the main line with a shop fabricated 90 degree "T", provided the connections is located not more than one hundred (100) feet from a manhole or cleanout on the main line and the main line is a minimum of 15-inches or larger in diameter.
- 4) Storm Drain Lateral Connections, Maximum Diameter.
 - a) Storm drain laterals draining a single legal lot may be connected directly to the public main line, provided the private storm lateral diameter is 8-inches or less and is no more than half the diameter of the main line (all other connections shall be to manholes, catch basins or junction boxes).
 - b) Unless otherwise approved by Public Works Director, the connection to the mainlines shall be with an Inserta-Tee connection so as to provide a strong, leak-proof joint. The storm drain lateral pipe shall not project inside the main line beyond the gasket (video inspection verification may be required, at the discretion of the Public Works Director).
 - (1) Where an Inserta-Tee connection to mainline pipe is used, the maximum lateral size shall be 2 nominal sizes smaller than the mainline pipe (ie. 4" on 8" main, 6" on 10" main, etc.).
- 5) <u>Separation from CBs, MHs, etc.</u> Sewer, storm or water service lines shall not cross directly under existing or new catch basins, manholes or other junction structures, nor shall these storm structures be designed or installed to be over the top of such service lines (3' minimum horizontal separation typically required).

b. Catch Basins

- 1) General
 - a) Side inlet grated catch basins shall be used at all locations along public streets. Exceptions will be considered on a case-by-case basis.
 - b) Catch basins may be used for the junction of pipes 15-inches in diameter.
 - c) <u>Maximum Catch Basin Depth</u>.
 - (1) As noted on City standard details, catch basins shall typically not be deeper than 4 feet from the gutter grade to the outlet pipe invert.

- (2) Deviation requires a written request & justification from the design engineer, and approval by the City Engineer.
- (3) For ditch inlet catch basins along 3/4 street or turnpike street sections (ie. which will be replaced in the future by curbline catch basins when the full street is completed), the depth of the catch basin pipes shall be such that the future curbline catch basins will not be deeper than 4 feet from gutter grade to invert.

Otherwise, the depth for ditch inlet catch basins shall typically not be deeper than 4 feet from the lower rim to the outlet pipe invert.

d) Catch basins shall be designed to completely intercept the 5 year design storm gutter flow.

2) Catch Basin Locations

- a) <u>Maximum Gutter Length Drained</u>. The maximum length of curb and gutter which may be drained by a catch basin is 500 feet.
- b) <u>Maximum Area Drained</u>. The maximum impervious area which may be drained by a catch basin is 20,000 square feet.
- c) <u>Descending Stub Streets or Curbs Ends</u>. Catch basins shall be installed where the improvement ends on all streets and/or curbs terminating on a descending grade, and piped to an approved point of disposal.
- d) Catch basins in the middle of blocks shall be located within 5 feet of the extension of a common property line.
- e) Catch basins shall be installed at all low spots, whether on private or public property, and shall be connected to a storm drainage facility.
- f) <u>Catch Basins in Relation to Pedestrian Ramps</u>.
 - (1) Catch basins shall not be located in front of pedestrian access ramps.
 - (2) Catch basins shall be set to minimize gutter flows across new pedestrian access ramps to the extent practicable, as determined by the Public Works Director and City Engineer.

<u>Catch Basin Uphill of Pedestrian Ramps</u>. A catch basin shall be set on the uphill side of pedestrian ramps, unless otherwise approved on a case-by-case basis.

Maintenance of Private Catch Basins. In order to ensure compliance with City requirements regarding stormwater discharge, all catch basins on private property (parking lots, etc.) which drain to a public storm system shall be provided with a recorded agreement allowing for inspection entry by Public Works Director, unless catch basins are located within a City easement, or otherwise covered by a detention system maintenance agreement.

Maintenance of private catch basins and private stormwater systems shall be an ongoing responsibility of the property owner, whether or not a maintenance agreement is recorded.

3) <u>Drop Across Catch Basin Structure</u>. The vertical drop across flow-through storm drain catch basins shall not be less than 0.1 feet.

c. Storm Manholes

- 1) Storm Manhole Size
 - a) Manhole size shall conform to the requirements outlined under Division 4, Sanitary Sewers and the City standard details.
- 2) Storm Manhole Location
 - a) Manholes shall be installed at all pipe junctions where the depth from rim to invert exceeds 4 feet or where the pipe is 18-inches in diameter or greater. Exceptions will be reviewed on a case-by-case basis.
- 3) <u>Drop Across Storm Manhole Structure</u>
 - a) Generally, the minimum vertical drop across a 4-foot diameter manhole is required as shown below (drop across larger diameter manholes shall be increased to provide the equivalent channel slope across the manhole).
 - (1) Straight through runs: 0.1' minimum drop
 - (2) Bends greater than 45°: 0.2' minimum drop
 - b) For storm drain service laterals connected to manholes, see PWDS 4.18 (prior written approval required).
 - c) <u>Match Crowns</u>. Where storm pipes of different sizes enter the same manhole, the design shall generally provide that the crowns of the smaller incoming pipes are set at or above the same elevation as the outlet pipe crown. Deviation requires a written request & justification from the design engineer, and approval by the City Engineer.

d) Opposing Inlet Pipes with Significantly Differing Slopes. In cases where two pipes discharge into a manhole from opposite directions and one pipe has a slope more than 4% steeper than the pipe opposite, the invert of the pipe with the lower slope shall be set a minimum of 0.35 feet or ½ the pipe diameter, whichever is greater, above invert of the steeper pipe.

4) Storm Manhole Flow Channels

- a) Flow channels in manholes shall be of such shape (semi-circular bottoms) and slope to provide smooth transition between inlet and outlet sewer size/ invert to minimize turbulence and to ensure that the manhole channels are self-cleaning.
- b) Flow channel height shall typically be to the crowns of the storm pipes, but in no case shall channel depth be less than 2/3 the pipe diameter. Benches beside flow channels shall be sloped from the manhole wall toward the channel to prevent accumulation of solids.
- c) Beaver slide channels shall be shaped to allow the insertion of a 6-inch diameter by 3-foot long TV camera into the downstream sewer.
- d) Concrete for storm manhole channeling shall conform to the same requirements as for sanitary sewer manholes.

5) Rim Elevation

- a) The rims of all manholes located within paved or other hard surfaced areas (or where paved pads are required around manholes per City standard details) shall be set to finished grade. Manholes outside of these areas shall be set above finish grade as shown on the City standard details.
- b) Concrete riser rings shall be used to bring casting to grade. The height from the top of the cone or flattop section to the rim shall not exceed 18 inches.

d. Mainline Storm Cleanouts

Mainline storm cleanouts will not be approved as substitutes for manholes or terminal catch basins. Cleanouts shall only be allowed at the upper end of main storm lines less than 150 feet long which will be extended on the same grade and alignment during the next construction phase of a multiphase development (ie. future phase of a multiphase project approved for development under the same land use approval as the phase with the proposed cleanout), AND which do not have any storm drain service laterals.

- 2) All mainline cleanouts meeting the criteria above will be considered on a case-by-case basis and approved by the City Engineer and the Public Works Director (at their sole discretion).
- 3) In all cases, plan and profile showing the alignment and depth of the anticipated future extension from the proposed cleanout to the next manhole shall be submitted prior to approval of cleanouts.

3.18 WORK ON or CONNECTION TO EXISTING STORM DRAIN MAINLINES

a. General

- 1) Connections of new storm drain service laterals to existing storm mainlines shall be made watertight. Connection shall be made where possible to existing tees or wyes previously installed and capped. In all cases, the integrity of the existing tee or wye shall be verified by Public Works Director prior to connection.
- Where tees or wyes for connection are absent or unusable, connection of storm drain service laterals into existing storm mainlines shall be made with approved connection couplings or service saddles as noted below. Taps shall be installed without protrusion into or damage to the existing storm drain, and shall result in a watertight connection.
- 3) Unless otherwise approved in writing by Public Works and the City Engineer, storm drain service lateral connections to existing gravity pipes shall use Insert-a-Tee type fittings (*Fatboy style*). A note shall be added to the drawings stating that the coring machine for Insert-a-Tee couplings shall be anchored in accordance with the manufacturer's recommendations.

b. <u>Existing Storm Drain Mainline Slope & Condition Verification, Correction of</u> Adverse Conditions.

- 1) As a condition of connecting to and/or extending storm drain mainlines, the design shall include verification that the existing downstream storm drain mainline is in adequate condition and with adequate capacity to handle the existing and new flows, and otherwise conforms with City standards.
- This shall include verification of existing storm drain slopes and alignments downstream of the connection point (as part of the design topographic survey), AND cleaning/TV inspection of existing storm drain mainlines which meet any of the following conditions: (A) existing or design slopes less than 1.0% or (B) have had a history of flow or maintenance problems, or (C) end with mainline cleanouts at or near the connection point, or (D) existing downstream mainlines are located in easements outside of public right-of-ways.

This requirement generally <u>includes</u> existing storm mainlines which will be replaced in their entirety as part of the project, <u>unless</u> it has previously been determined that there are no existing service connections along the alignment to be replaced, and the alignment be can otherwise definitively determined.

- a) Costs for survey, title research, inspection, cleaning and TV inspection (including locating and painting out the mainline alignment during TV inspections) are the responsibility of the development team.
- The TV inspection shall be conducted by an approved technical service, using a track or wheel propelled self-leveling auto-focus pan-head camera which (A) is equipped to make audio-visual recordings of the TV inspections on USB storage device, and (B) is equipped with a sonde/locator system capable of allowing the alignment of mainlines being inspected to be located and painted out on the ground surface.
 - a) A standard 1-inch diameter ball shall be suspended in front of the camera during the inspection to determine the depth of any standing water (with the ball in contact with the pipe invert). The pipe shall contain sufficient water to reveal low areas or reverse grades during the TV inspection.
 - b) The USB storage device and written report (or download link and pdf report) shall be delivered to the City Engineer and the Public Works Director.
 - c) The alignment of mainline shall be painted on the surface of the ground for any mainlines inspected which do not have a manhole (or other junction structure) at both ends, and which do not have a straight alignment between manholes.
- 4) Unless otherwise approved in writing by the City Engineer, this cleaning/TV inspection/locate painting and alignment verification/survey (including verification that downstream storm drain mainlines outside of public right-of-ways are located within easements in compliance with current City standards) shall be done as part of the design process (note: any approval by the City to defer this pre-design TV inspection and/or alignment verification work shall not relieve the Developer and/or the developer's contractor of the responsibility to correct problems subsequently discovered, at the developer's sole expense).
 - If the development team uses storm drain TV inspections previously performed by the City or others, any discrepancies discovered during construction shall remain the developer's entire responsibility.
- 5) <u>Correction of Adverse Conditions.</u> The storm design shall include provisions to correct any adverse grade conditions, broken/obstructed pipe or other

conditions found in the existing storm drain mainline which (in the opinion of the City Engineer or Public Works Director) (A) may cause storm drain backups or significant access or (B) may present maintenance concerns/issues upon extension of the mainline and/or connection of additional mainlines or storm services, or (C) require upgrades along storm drain mainline alignments which are not located within public right-of-ways or within recorded easements in order to bring storm mains into conformance with current City standards. Corrections of any such adverse conditions shall occur prior to connecting to or extending the mainline, or setting new manholes.

3.19 DETENTION FACILITIES

a. Where Required

- 1) Peak storm water runoff shall be controlled by detention facilities for the following:
 - a) All subdivisions, commercial, industrial, public and multi-family developments.
 - b) Projects with 10,000 square feet or more of impervious area.
 - c) All other developments where such control is needed to prevent the capacity of the downstream system from being exceeded.
- 2) Developers shall be responsible for demonstrating to the satisfaction of the City Engineer that the downstream system has capacity for the proposed flows.
- 3) Developers proposing to not provide detention or control shall be responsible for demonstrating to the satisfaction of the Engineer that such control is not necessary.
- b. <u>Detention System Allowable Discharge Rate (Outflow)</u> (also remaining available downstream capacity)
 - Peak runoff rate (ie. peak design discharge rate from the detention system) during a 25 year frequency storm shall be limited to that which would occur in a 5-year frequency storm under pre-development conditions as defined above, or the remaining available downstream capacity for the site being developed, whichever is more stringent (see Detention System Storage Capacity section below).

2) Remaining Available Downstream Capacity. Remaining available downstream capacity is defined as the downstream capacity unused during the design storm event defined above under PWDS 3.10.b.

The remaining available downstream capacity for the site being developed is that portion of the remaining available downstream capacity equivalent to the ratio of the site being developed to the total undeveloped land in the basin.

c. Detention Facility Location/Siting, Maintenance, Access

- Of that same building, and any detention storage proved by the City Engineer and Public Works Director, all detention storage proposed within of a building footprint except for detention storage designed solely to contain water from the roof of that same building, and any detention storage proposed within a building footprint shall also be approved by the building official as applicable).
- 2) <u>Within Public ROW or City Easement</u>. Detention facilities located within a public right-of-way or City utility easement shall be configured as piped detention facilities (ie. surface detention within right-of-way or City utility easements is not allowed, and piped detention within a public right-of-way shall be solid wall pipe).

Installation of a detention flow control manhole within the street surface shall require written approval by the City Engineer and the Public Works Director on a case-by-case basis, subject to demonstration that installation outside of the street surface (ie. behind the curbline) is not feasible due to the specific storm drain system configuration.

- 3) <u>Detention Easement & Maintenance Responsibility</u>. All detention facilities shall be maintained by the property owner(s) or Home Owner's Association (or similar entity acceptable to the City) served by the detention system, including but not limited to cleaning and maintenance of outlet/flow control structures, irrigation (via a permanent irrigation system), mowing, etc.
 - a) Maintenance shall be assured through a recorded maintenance agreement acceptable to the City (see Appendix D).
 - b) All detention basins, with the exception of parking lot detention basins, shall be within a storm/detention and access easement to the City.
- 4) <u>Detention Flow Control Structure Maintenance Access Requirements.</u>
 Unless otherwise approved in writing by the Public Works Director, provisions for all weather maintenance vehicle access to detention flow control structure shall be installed by the developer (see also PWDS 3.12.d.6).

d. <u>Detention Facility Design</u>

1) General

- a) All detention facilities and drainage calculations shall be designed and stamped by a Professional Engineer registered in the State of Oregon. Detention facilities shall be designed to protect public and private property.
- b) The water level in the receiving stream during the design storm event must be lower than the bottom of the detention basin, unless otherwise approved by the City Engineer and the Public Works Director on a case-by-case basis.
- c) Volume Excluded from Detention Storage Calculations. Any portion of the detention system below the design water level in the receiving stream or storm system, or below the outlet pipe invert elevation, may not be utilized for storage volume in detention calculations (for open basins or underground detention systems with open bottoms and/or for pipe systems utilizing open-graded drainage stone for storage volume, any volume which does not drain out completely between storms shall be excluded from storage volume calculations).
- d) <u>Detention System Drainage between Storms</u>. Except for detention systems designed as water quality facilities with underdrain systems, all detention systems shall be sloped towards the outlet to allow the system to drain out completely between storms, including drainage of upstream piping discharging to the detention system (ie. bubbler type systems are not typically allowed, to prevent sediment and/or debris buildup inside upstream pipes & structures).

2) Detention System Storage Capacity

- a) Detention facilities shall have storage capacities to detain the greater of the following:
 - (1) Detain the difference between a 5-year frequency storm under pre-development conditions (ie. peak design discharge rate) and a 25-year frequency storm under developed conditions (ie. design inflow rate).
 - (2) Detain the difference between the *remaining available* downstream capacity for the site being developed (as defined above) under basin design storm conditions and a 25 year frequency storm under developed conditions.

3) Detention System Orifice

a) The orifice size and the hydraulic head shall be adjusted to produce the allowable outflow based on the following formula:

$$D = 6.166 \left(\frac{Q}{H^{1/2}} \right)^{1/2}$$

Where:

D = Orifice diameter in inches.

O = Discharge in cubic feet per second.

H = Hydraulic head above the orifice in feet.

- b) <u>Minimum. Orifice Diameter</u>. To prevent excessive plugging, the minimum orifice diameter shall be 1½-inches.
- c) <u>Flow Control Orifice Location</u>. The orifice shall be located in a flow control manhole or other acceptable structure (adequately sized to allow maintenance access to the orifice assembly), installed in an accessible location outside of the detention basin slopes (for open basins).
- d) <u>Outlet Debris Protection</u>. The outlets of all detention basins shall be provided with suitable debris barriers designed to protect the outlet from blockage or plugging.
- e) Flow control structure & associated orifice assemblies shall substantially conform with the general configuration shown on the City standard details, as approved by the Public Works Director and the City Engineer (even if installed in a structure other than a manhole as shown on the details).
 - (1) Details for alternate structures to house the flow control assembly shall be drawn to scale, and to demonstrate that the assembly fits in the proposed structure while allowing for equivalent maintenance & cleaning access.
 - (2) If an alternate flow control outlet assembly is proposed which does not allow for continuous outflow from the detention system equivalent to the predevelopment flowrate, the detention storage volume shall be increased to compensate for antecedent rainfall which reduces the available detention storage prior to the start of the design storm event.
- f) <u>Fall Across Flow Control Structure</u>. For flow control manholes or structures with inlet & outlet pipes, fall across the structure shall conform with City standards for manholes and basins (0.1' fall from inlet to outlet for standard size structures).

4) Detention Overflow System

a) Primary & Emergency Overflow Capacity. The detention facility shall have a primary overflow system with the capacity to pass the design storm, AND an emergency overflow system with the capacity to pass a 50-year frequency storm, in the event that the primary overflow becomes blocked or restricted.

Detention system overflows shall discharge into a public storm drain facility or the natural drainage course for the drainage basin where the development is located (without flowing across adjacent property where a recorded easement or an established natural drainage channel does not exist), and shall be designed to minimize the impact to downstream systems (the design engineer shall identify the flow path that overflow water will follow to demonstrate that this requirement is satisfied).

- b) <u>Primary Detention System Overflow</u>. The primary overflow elevation shall be a minimum of 1 foot below the top of the structure designed to contain the water.
 - (1) If the <u>primary system overflow</u> (for detention basins or combined detention/WQ basins) is through a piped system (rather than the overflow riser inside the flow control manhole), the overflow inlet structure (ie. basin overflow outlet structure) shall be configured as a slanted grate ditch inlet catch basin per City details (Detail 313 or equal), with the lower rim set at the overflow water elevation.

An alternate configuration (which may be approved by the City Engineer on a case-by-case basis) is a concrete structure (round or square) is utilized with a domed beehive grate (ductile/cast iron or galvanized steel), with adequate capacity to pass peak overflow rates even with half or more of the grate blinded off with debris. Details shall be provided on the drawings for alternate configurations.

- c) Emergency Detention System Overflow. The design engineer shall also demonstrate how emergency overflow (for flows which exceed the primary overflow capacity, or if the primary overflow becomes blocked or restricted) will get from the detention system to an approved downstream storm system (pipe, channel, etc.) without causing damage to the detention system or causing damage to adjacent properties, or flowing across adjacent properties without an easement.
 - (1) If an emergency overflow <u>channel</u> is proposed from an open basin, it shall, as a minimum, consist of 18" minimum depth of

riprap, placed over geotextile fabric (riprap fabric from the current ODOT QPL for OSSC Table 02320-2) which is extended to the surface of the ground at the edge of the riprap, with a minimum flow depth of 12-inches and 3H:1V side slopes.

The riprap shall be either grouted or have all voids filled with 3/4"-0 granular baserock to prevent water flow through the riprap and erosion of the underlying subgrade.

The channel shall be extended to the point where flow will not cause erosion damage during an emergency overflow event (ie. to a natural channel or other area where the flow will spread out and flow velocities will be minimal).

d) As a minimum, the design of detention facilities shall ensure that primary or secondary *(emergency)* overflow or system failure will not cause flooding in any habitable building area.

5) Open Detention Basins

- a) Off-Stream Storage. Unless otherwise approved by the City Engineer, all open detention basins (as well as detention chambers with open bottoms) shall be designed as off-stream storage basins, sloped to drain completely between design storms.
 - (1) Open detention basins approved as flow-through systems (rather than off-stream storage) shall be limited to applications where such configuration is required by other permits (wetland, water quality, etc.), and shall be provided with fencing around the perimeter of the basin.
- b) <u>Open Basin Water Depth</u> At maximum storage, the maximum allowable water depth shall not exceed 5 feet.
- c) Open Basin Freeboard The maximum water surface elevation at overflow shall be a minimum of 1.0 feet below the top of the structure (curb, bank, berm, etc.) designed to contain the water.
- d) Open Detention Basin Side Slopes & Top Width, Fencing
 - (1) <u>Interior Side Slopes</u>. The interior side slopes for detention basins shall be no steeper than 4H:1V.

Steeper interior side slopes (up to 3H:1V max) may be used where approved by the Public Works Director and if access to the detention facility is restricted by chain link or other approved fencing a minimum of six (6) feet high, and includes

a lockable gate at the maintenance access points (see maintenance access requirements below). Retaining walls (with fencing to restrict access) shall be used in lieu of interior side slopes steeper than 3H:1V.

Chain link fences, posts & hardware along or adjacent to public right-of-ways shall be vinyl coated.

- (2) <u>Exterior Side Slopes</u>. Exterior side slopes shall be no steeper than 3H:1V for maintenance.
- (3) <u>Fencing Required for Flow-Through Basins</u>. Detention basins configured as flow-through systems shall be provided with fencing (6' minimum height) around the entire perimeter of the basin to restrict access by children & unauthorized personnel.
- (4) <u>Berm Top Width</u>. Unless greater width is required based on site specific geotechnical or maintenance access considerations, slopes, berms or dikes surrounding open basin detention systems shall generally have a minimum top width of 4 feet to provide for maintenance access around the perimeter of the top of the basin.
- e) Open Detention Basin Bottom Slope See PWDS 3.19.d.1.b above. Except for basins designed as water quality basins with underdrain systems, the bottom of all open detention basins shall be sloped a minimum of 1% towards the outlets to allow the basin to drain out completely between storms.

Flatter slopes will require the use of a concrete valley gutter or similar method as approved by the City Engineer.

f) Open Detention Basin Maintenance and/or Mowing Access, Gates – Provisions for maintenance and/or mowing access shall be provided for interior and exterior slopes, and for the bottom of open basins.

Provide an access ramp to the basin bottom if mowing is required and if side slopes exceed 4H:1V, or provide concrete or similar access steps for detention basins enclosed by retaining walls and where mowing of the basin bottom is not required. Provide a locking gate (conforming with the requirements of PWDS 1.12.c) in any fence provided around the detention basin, in order to provide for security and maintenance/mowing access).

- g) Open Detention Basin Irrigation & Landscaping.
 - (1) Grass and a permanent automatic underground irrigation system shall be provided and installed by the developer for open detention basins outside of parking lots (with number of zones as required based on basin size and full irrigation coverage of interior & exterior slopes & bottom).
 - (2) Irrigation controllers shall be mounted in a secure location, and shall be battery or solar powered unless a permanent power supply is installed and provided by the developer (as approved by the Public Works Director and the City Engineer).
 - (3) While design-build installation of the required detention basin irrigation system is acceptable, the civil drawings shall include a note designating that the permanent underground sprinkler irritation system will be provided design-build by the Contractor, and shall show the following. s
 - (a) Connection point of irrigation line & location of backflow device required by City & state standards, and
 - (b) Alignment of the irrigation supply line (including pipe size & material) from the connection point to the detention basin, and
 - (c) Location of the irrigation controller.
 - (4) Any deficiencies in the irrigation system coverage or irrigation controllers during the warranty period shall be corrected by the contractor.
- 6) Parking Lot Detention Basins (water storage in paved areas)
 - a) <u>Depth</u> The maximum water depth for parking lot detention basins shall be 1 foot.
 - b) <u>Freeboard</u> The maximum water surface elevation at overflow shall be a minimum of 0.25 feet below the top of any and all structures designed to contain the water. Landscape berming is typically not allowed for containing water on parking lot detention basins.
 - c) The maximum water level *(overflow)* in parking lot detention basins shall be a minimum of 1 foot below the lowest habitable floor elevation of buildings within the proximity of the basin.
 - d) <u>No Driveway or Fire Lane Encroachment</u>. No parking lot detention basin water storage areas shall be located within the primary

ingress/egress portions of the site. Parking lot detention basins shall be designed to provide a minimum 11 foot wide unflooded emergency access route at maximum water level conditions (ie. overflow conditions), and shall not encroach into designated fire lanes.

- 7) Piped OR Arched Bottomless Underground Detention System, Drainage Stone
 - a) <u>Piped Detention</u>. Piped detention systems shall be designed as a watertight subsurface pipeline (*ie. solid wall pipe*), unless otherwise approved for an underground perforated pipe systems surrounded by open graded drainage stone which is fully encapsulated in geotextile drainage fabric.

All pipes shall be sloped a minimum of 0.1% towards the outlet to drain. Plan & profile views shall be provided for piped detention systems.

- (1) <u>Inspection/Maintenance Access</u> A pollution control manhole with an orifice shall be provided at the downstream end of the piped detention system, and a standard manhole shall be provided at the upstream end (alternate configurations, including for non-linear or parallel pipe run designs [ie. manifold system], shall be approved by the Public Works Director and the City Engineer on a case-by-case basis, subject to providing adequate inspection and maintenance/cleaning access to all detention pipe runs, including provisions to allow for camera & hydro-cleaner access and sediment/debris removal from all in-line or flow-through pipe runs or isolation rows).
- (2) Pipe type shall be based upon the depth of cover and loading conditions as specified herein (see PWDS 3.8.b).
- (3) <u>Detention Pipe Venting</u>. If a larger solid wall underground detention pipe is provided with eccentric reducers at each end (for smaller pipe to connect from the large detention pipe to adjacent manholes), a vent pipe shall be extended from the crown of the larger detention pipe (to one of the adjacent manholes) in order to exhaust air from the larger detention pipe during filling (venting is not required for perforated pipe systems).
- (4) <u>Pipe with Open Graded Drainage Stone</u>. If piped detention is proposed which utilizes open-graded drainage stone for water storage, the drainage stone shall be fully encapsulated in geotextile fabric, <u>and the drainage stone shall match the requirements summarized below for arched bottomless</u>

<u>chambers</u>, including provisions for drainage of the rock void storage volume between storms.

- b) <u>Arched Bottomless Chambers.</u> Where open-bottom arched subsurface stormwater detention chambers are proposed, they shall be designed as <u>off-stream storage basins</u> (*PWDS 3.19.d.5.a*), and licensed as infiltration systems by DEQ as applicable.
 - (1) Fabric Base Liner. Where sediment or debris can enter the chambers (ie. an isolation row), a double layer of continuous geotextile fabric (without seams) shall be provided on top of the angular stone foundation rock, extended laterally beyond the base legs of the arched detention chambers for a distance per manufacturer's recommendations, to allow the chambers to be cleaned of silt or debris with a hydro-cleaner/jet-vac as applicable.
 - (2) <u>Cleaning Access.</u> A manhole shall be provided at the downstream end of each isolation chamber row, to allow for hydro-cleaner access and sediment/debris removal.
 - (3) <u>Chamber Outlet Pipe Invert</u>. The chamber system shall be configured with the outlet pipe invert even with or lower than the fabric base liner, so that sediment and debris can be pulled from the chambers during cleaning. Details or notes defining this configuration shall be included on the design drawings.
 - Where a chamber outlet cap with a 24" outlet is necessary in order to match the base liner invert (as is necessary for many chamber styles), it is acceptable to install an eccentric reducer on the outlet pipe stub to reduce the pipe size to that appropriate for the design flowrates (12" minimum typical where cleaning is required).
 - (4) <u>Inspection/Maintenance Access</u> Inspection ports and/or maintenance access points shall be provided at intervals meeting manufacturer's recommendations (upstream end and midpoint of each chamber row as a minimum).
 - (5) <u>Piped Cross Connections</u>. If parallel chambers are proposed without each row having a piped inlet, cross connection pipes between chamber rows shall be provided (at each end of each chamber). The cross connection pipes may be raised above the chamber floor to prevent sediment from flowing from the isolation chamber to the remaining chambers.
 - (6) <u>Chamber Slope and/or Drainage Between Storms</u>. If the chamber bottoms are not sloped to drain out between storms,

they shall be provided with an underdrain system connected to the outlet manhole in order to fully drain the chambers.

c) Open-Graded Drainage Stone.

- (1) Bedding stone under arched chambers and embedment surrounding the chambers (or surrounding perforated pipe) shall be clean, crushed, angular quarry stone, generally ¾" 2" gradation size unless otherwise approved (clean rock without fines).
- (2) Open-graded stone shall be laboratory tested to demonstrate minimum 40% void ratio for water storage.
 - Even if the proposed open-graded stone is tested with a void ratio greater than 40%, design parameters for sizing open-graded stone storage sections shall generally not exceed 45% void ratio, in order to account for variability between tested and supplied stone.
- (3) Open-graded stone shall be completely encapsulated in geotextile drainage fabric conforming with chamber manufacturer recommendations and drawing notes.
- (4) <u>Horizontal Separation</u>. Horizontal separation requirements between drainage stone systems and City utilities shall be interpreted as being clear separation from the edge of the opengraded drainage stone limits.
- d) Easement widths shall conform to the minimum requirements outlined herein.

3.20 PRIVATE STORM DRAINAGE COLLECTION SYSTEMS

- a. Private storm drainage collection systems shall be designed in conformance with main line standards specified herein when plumbing code grade requirements of Oregon Plumbing Specialty Code (OSPC) cannot be met. The private storm drainage collection systems shall conform to the detention requirements contained herein as applicable.
- b. These provisions of the PWDS do not, nor are they intended to supersede the Oregon Plumbing Specialty Code (OPSC), but are intended to allow the design engineer flexibility in the design of private storm drainage systems where the OPSC minimum slope requirements cannot be satisfied.
- c. <u>Piped Connection Location</u>. Private storm drainage collection systems (serving more than one legal lot of record) connecting to a piped public storm system shall be

connected at an existing or new manhole, catch basin or junction box.

3.21 INFILTRATION SYSTEMS, DRYWELLS AND FRENCH DRAINS

- a. Infiltration systems, drywells and french drains are not allowed as the exclusive method for draining public right-of-ways but may be used for developments on private property for buildings, paved driveways, parking and loading spaces, subject to the all of the following conditions:
 - There are no public storm drain facilities, available within a reasonable distance of the development as determined by the City Engineer. The need to acquire easements across private property to access a public storm drain facility that is within a reasonable distance shall not be grounds for allowing an infiltration system unless all other criteria are met.
 - Site Specific Infiltration Testing Required. If a design based on stormwater infiltration are proposed, soils infiltration tests shall be performed by a registered Professional Geotechnical Engineer licensed in the State of Oregon to document the permeability and infiltration capacity. The Geotechnical Engineer shall develop a recommended infiltration testing methodology using test methods and sound engineering principles appropriate to the specific site being tested (test methods proposed must demonstrate infiltration capacity of the site soils, as opposed to percolation capacity). A detailed summary of the proposed methodology and test procedures shall be submitted to the City Engineer a minimum of 7 business days in advance of the proposed testing, for review and comment by the City Engineer.

Infiltration tests shall be conducted at the location and depth of the proposed infiltration facility. The Geotechnical Engineer shall perform a field evaluation of the soils to demonstrate that the highest seasonal water table is not within 5 feet of the ground surface, or within 2 feet of the bottom of the proposed infiltration facility. A final infiltration report stamped by the Geotechnical Engineer shall be provided with the design drawings submitted for review by the City.

- Reserve Capacity. The system shall be engineered to ensure that adequate reserve capacity is available. Adequate reserve capacity shall include all runoff assuming the maximum amount of impervious area allowed by City Code based on zoning.
- 4) Replacement Area Agreement. The system shall include an instrument recorded against the property reserving an area adequate for a replacement infiltration system equal in size to the primary system.
- 5) <u>Grease & Fines Removal, Maintenance Agreement</u>. Provisions shall be made for grease and fines removal, including recording of a maintenance agreement (acceptable to the City Engineer & City Attorney) against the property.

- The site shall be graded so that it does not drain onto a public right-of-way without a storm drain system or neighboring property in the event that the drywell or french drain fails. The site and adjacent down gradient areas shall have no history of groundwater surfacing or being within 12-inches of the ground surface during the wet winter months, and shall not have field tile systems which may convey the infiltration water onto neighboring property.
- 7) The design shall include pretreatment conforming with Oregon DEQ standards for groundwater injection wells, shall be acceptable to the City Engineer, and shall be approved by and registered with DEQ prior to final plan approval by the City.
- b. <u>DEQ Registration Required</u>. Where drywells, french drains or other infiltration systems are authorized & allowed, they shall be registered with the Oregon DEQ to the extent required by DEQ under OAR 340-044-005 through 340-044-055 prior to final approval by the City and construction (in addition to the standards above). Only DEQ "rule authorized" infiltration systems are acceptable, unless otherwise approved by DEQ and the City Engineer. Under these DEQ regulations, stormwater dry wells are "rule authorized" if they meet certain standards as determined by DEQ (conformance with current DEQ/EPA standards must be confirmed prior to submittal for review by the City). These standards restrict the use of dry wells under the rule authorized provisions to the following.
 - No other method of storm water disposal, including construction or use of surface discharging storm sewers or surface infiltration systems, is appropriate. An appropriate method shall protect groundwater quality and may consider management of surface water quality and watershed health issues.
 - 2) No domestic drinking water wells are present within 500 feet of the injection system.
 - The injection system does not exceed a depth of 100 feet and the bottom of the infiltration structure is a minimum of 10 feet above the highest seasonal groundwater level.
- c. It should be noted that DEQ standards consider water draining from building roof areas (that has not been mixed with any other stormwater) differently, in that it can be discharged in a dry well without the same level of treatment required for other types of runoff, although it must still comply with the City and DEQ criteria above and receive DEQ approval prior to final City approval or construction.

3.22 STORM DRAIN SERVICE LATERALS

- a. As a minimum criterion, construction of the storm service laterals shall be of the same quality and meet the same requirements as the public storm drain with regard to materials, watertightness, and location. In addition, these storm drains shall conform to the State and local plumbing codes and restrictions.
- b. Storm drain laterals shall be installed for any residential lots which do not have finish grades that slope 2% minimum from the back of the building envelope to the top of the fronting curb (ie. so as to allow both the roof and footing drains to flow to the fronting curb weep holes). In all cases, storm drain lines shall be provided as required to prevent roof drainage or concentrated surface drainage from flowing across pedestrian access routes or onto adjacent properties.
- c. Storm Drain Service Lateral Connection Location.
 - 1) Storm drainage service laterals (serving a single legal lot of record) shall not tie into public storm manholes unless approved by City Engineer and Public Works Director on a case-by-case basis. Where connection to a manhole is allowed, storm drain service lateral inverts shall provide a minimum of 0.5 feet fall across the manhole, or the storm drain service lateral shall match crowns with the outlet pipe, whichever is higher.
 - 2) Connection of a storm drain service lateral to a public catch basin is allowed, subject to approval by the Public Works Director.
 - 3) Storm drain service laterals serving more than a single legal lot of record (or larger than 8-inch diameter) shall be connected to an existing or new manhole, catch basin or junction box, unless otherwise approved by the City Engineer and Public Works Director on a case-by-case basis.
 - a) Where an Inserta-Tee connection to mainline pipe is used, the maximum lateral size shall be 2 nominal sizes smaller than the mainline pipe (ie. 4" on 8" main, 6" on 10" main, etc.).
- d. <u>Easement Requirement</u>. An easement shall be recorded for any storm drain service lateral which encroaches on or crosses any legal lot other than one being served.
- e. Storm Drain Service Lateral Cleanouts.
 - 1) A cleanout (set in a cleanout box conforming with City standard details) shall be installed at the right-of-way or easement line for all storm drain service laterals. The storm drain service lateral shall extend beyond the property line/storm easement boundary cleanout to the back of any PUE fronting the right-of-way or easement, or to the far side of easements for public utilities, whichever is further.

- Where storm drain service laterals are required or shown along flagstem or common use driveways (or which cross property other than that being served), the pipe shall be extended to the end of the driveway or to the boundary of the lot being served (whichever is farther) in conjunction with the development infrastructure construction.
- 3) For long storm drain service laterals, a cleanout to City standards shall be installed on the upstream side of any intermediate property lines crossed (including on the upstream side of the property line where the lateral crosses onto the property being served), as well as at maximum 100-foot intervals beyond the right-of-way or easement cleanout, and at bends as required by the Oregon Plumbing Specialty Code (OPSC).
- f. <u>Minimum Storm Drain Service Lateral Diameter and Slope</u>.
 - 1) For storm drain service laterals connected to storm mainlines, manholes or catch basins, the minimum inside diameter of a storm drain service lateral shall be four (4) inches and shall be equal to or greater than the building drain or private site storm drain diameter.
 - 2) Typical minimum diameter for <u>multi-family</u>, <u>commercial</u>, <u>industrial</u> or <u>public</u> properties shall be 6-inch (in part to avoid the need to cut public streets in the future, if a more intense use is proposed for the property, which results in increased flows).
 - 3) Storm drain service lateral slope shall be uniform from the mainline connection to the property line *(or easement)* cleanout, and shall conform with the City standard details *(2% minimum)*.
- g. Additional storm drain service laterals must be stubbed into the property lines sufficient to serve all residential parcels (including those which can be further partitioned in the future) where such service or future partition would require that new streets be cut to install such services, or where the service line must cross intervening property to provide such future service.
- h. <u>Curb/Gutter Marking</u>. Where storm drain service laterals tied to storm mainlines in the street, the top of curb and the gutter pan shall be stamped at the point of the service crossing as required by the City standard details and standard notes.
- i. <u>Storm Drain Service Laterals Crossing Other Property</u>. Unless otherwise approved by Public Works Director on a case-by-case basis, where storm drain service laterals are necessary to serve/drain parcels which are located to the rear of and above (*in elevation*) another parcel which fronts a right-of-way that contains a storm drain mainline, the storm drain service lateral serving the upper parcel must be directly connected to such storm mainline, and shall not daylight through a curb weephole.
 - 1) In all cases, the storm drain service lateral from the rear parcel shall be located within a private utility easement granted by the lower property owner, where

- it crosses the lower property.
- 2) In addition to any cleanouts required by the OPSC, there must also be a cleanout installed at the right-of-way boundary where the storm drain service lateral serving the upper property exits the lower property into the right-of-way (ie. property line cleanout at the ROW line).
- j. <u>Perpendicular Storm Drain Service Laterals</u>. Unless otherwise approved in writing by the City Engineer and the Public Works Director on a case-by-case basis, storm drain service laterals shall be installed from the mainline to the property line perpendicular to the street centerline.
 - 1) Permanent installation of storm drain service laterals <u>parallel</u> with the right-ofway is generally prohibited, except where extenuating circumstances exist which meet the variance criteria.
- k. Backlot Storm Drain Systems and Area Drain Locations.
 - Where lots are proposed or required to be served by backlot drainage systems (ie. public or private drainage system outside of the public right-of-way), each lot shall be provided with an approved private area drain at the lowest back corner of the lot in order to provide for positive drainage of the lot and to prevent roof & surface drainage from flowing onto adjacent properties.

3.23 PRIVATE STORM PUMP SYSTEMS

- a. As noted under PWDS 3.9.a.5, gravity storm service is required where possible. Installation of a private storm pump station (ie. for conveying roof drain and/or storm drainage surface runoff to the public storm drain system, as opposed to installation of sump pumps installed solely for removing water from the crawl space under a building and which is not under Public Works jurisdiction) is not typically allowed except with express prior written approval by the Public Works Director and/or the Building Official as applicable (written approval during building permit review where Type B Public Works permits are not required, and prior to submittal of project design drawings for review otherwise).
 - 1) <u>Crawl Space Sump Pump Discharge Point</u>. Sump pumps designed solely to remove water from the crawl space of a single building located on a single legal lot do <u>not</u> require review or approval from Public Works, although the discharge connection point (to a City storm drain pipe, channel or gutter which is located within a public right-of-way or City easement) <u>does</u> require review and approval by Public Works (typically under a Type A PW permit).

Any discharge connection point from a crawl space sump pump to a gutter along a public street shall <u>not</u> result in sump pump discharge water sheet flowing across the street.

<u>Check Valve Required</u>. Any crawl space sump pump connected to a public storm system shall be provided with a check valve *(installed at an accessible location)* in order to prevent drainage of surface water back through the sump pump discharge line *(see OPSC 1101.6.2.5)*.

- b. <u>Private PS to Serve Only a Single Legal Lot of Record</u>. A private storm pump station system shall not be allowed to serve more than one legal lot of record. This includes cases where multiple legal lots of record are under common ownership and/or are listed as a single tax lot.
 - If there are multiple legal lots of record (or portions of multiple legal lots of record) underlying a single tax lot for which a private storm pump station is proposed, the underlying legal lots shall be consolidated into a single legal lot of record (through a property line adjustment or similar process) as a condition of approval for the private storm pump station (such consolidation shall be completed prior to activation of the private storm pump station, and prior to issuance of temporary or permanent occupancy).
- c. <u>Private Stormwater Pump Stations</u> (other than crawl space sump pumps). Any private storm pump stations approved by the City shall meet standards established by the Oregon Plumbing Specialty Code (OPSC), the Public Works Director (see PWDS 3.3) and other applicable codes or standards (whichever is more stringent).
 - Per OPSC Chapter 11, capacity of each private storm pump station shall be designed based on the maximum projected roof or paved area to be handled and rainfall intensities per OSPC Table D101.1 for western Oregon (0.014 gpm per square foot).
 - 2) In areas with the potential for seasonal high groundwater levels, the storm pump station system basin shall be anchored with concrete or equivalent method to prevent floatation.
 - The storm pump station system discharge shall be equipped with a swing check valve to prevent backflow from the discharge line into the receiving basin, and with an isolation valve located on the discharge side of the check valve (per OPSC 1101.6.2.5). The sump pump station check valve shall be placed in a suitable location and/or box/vault that provides adequate access for inspection, repairs and replacement (provide unions on both sides of check valves in facilitate removal for cleaning and/or replacement).
 - 4) Per OPSC 1101.14, any storm pump station system serving any "public use" shall have duplex alternating pumps arranged to function alternatively in normal use and independently in case of overload, clogging or mechanical failure (also for uses including but not limited to commercial, industrial, multifamily, or public access buildings).
 - 5) Duplex pump station systems shall be equipped with an accessible visible and

- audible alarm activated in the event of pump failure (overload, mechanical failure or high water condition).
- Drawings shall be submitted for review by Public Works Director and/or the Building Official as applicable, with enough information to allow review of design features, including listing of the area being drained and the design flowrates as noted above. Provide cut sheets and manufacturer's information for the proposed pumps & controls, anchor block or ballast sizing, etc.
- 7) Unless larger piping sizes are required by the Plumbing Official (based on OPSC capacity sizing noted above), discharge lines from the pumped storm station system to the discharge point should be a minimum diameter of 1½-inches.
- 8) Any discharge connection point from a private stormwater pump to a gutter along a public street shall <u>not</u> result in sump pump discharge water sheet flowing across the street.
- d. <u>Easements</u>. The developer shall be responsible for obtaining and recording private utility & access easement(s) for any portions of the storm pump station discharge system *(including piping)* which encroaches on or crosses a legal lot other than that being served by the private storm pump station system.
- e. <u>Recorded Maintenance Agreement</u>. An operation & maintenance agreement acceptable to the City shall be recorded against the property.

↑	